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Abstract  

Seismic reflection images are usually corrupted by 
different kinds of undesirable noise, which may 
compromise the interpretation process. Noise can be 
classified as coherent or incoherent. The Curvelet 
Transform (CT) is a relatively recent tool that brings the 
image to a higher dimension sparse domain with 
multiscale and multidirectional expansions. This transform 
lends itself particularly well to represent features that are 
smooth along a curve and have an oscillatory behavior in 
the normal direction, just like the main features of a 
seismic data. The higher sparsity promoted by CT allows 
that a few large coefficients represents the signal 
components while incoherent energy, like random noise, 
is spread amongst a great number of small coefficients. 
Additionally multidirectional decomposition turns out as a 
powerful feature in the analysis of seismic events, which 
have preferred directions. In this work is presented the 
development of a threshold estimate based on a 
windowed neighborhood Root Mean Square (RMS) that 
works as a weight array for curvelets coefficients at each 
location, and consequently, at each scale and direction. 

Introduction 

The filtering of seismic images is an important step to 
prepare seismic data to be utilized efficiently in other 
stages like interpretation or inversion. The CT is 
presented as a time-frequency tool with directional 
characteristics that enhances the sparsity, providing an 
optimal domain for filtering, where a few large coefficients 
represents the signal components (Candés & Donoho, 
2000; Candès et al., 2006). 

The CT is a tool similar to Wavelet Transform (Mallat, 
1989), but with an additional directional decomposition 
feature. Also the curvelet coefficients fit better to smooth 
curves with an oscillatory behavior on their normal 
direction. Hence we believe that the CT is a better choice 
to decompose seismic images for filtering. 

Thanks to the promotion of sparsity diverse threshold 
estimates where developed over these transforms in the 
last decades. Two of them are the VisuShrink (Donoho & 
Johnstone, 1994) and the Classical Shrinkage Threshold 
(CST) developed by Starck et al. (2002) and named in 
this manner by Bao and Li (2011), defined as 
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respectively, where σ represents the standard deviation 
estimated for the incoherent noise, N is the number of 
pixels, j and l are the scale and angle index respectively, 
E is a constant normalization factor, α = 4 to the finest 
scale coefficients and α = 3 otherwise. These methods 
are universal, where only one λ is utilized for all 
coefficients (In equation 2 the j and l index are indicated 
because the normalization factor). Other estimates 
techniques are called adaptive, where the threshold 
varies according to the scales and/or angles. The 
BayesShrink (Chang et al., 2000) is written as 
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2
 is the noise variance and σx(j) is the standard 

deviation of the noise-free curvelet coefficients at a scale 
panel j. The σx(j) can be estimated as 

 

 

where σy(j) represents the standard deviation of the 
curvelets coefficients at a scale j. Another adaptive 
threshold technique is known as SureShrink (Donoho & 

Johnstone, 1995) and can be represented as 

and 

 

where N is the number of coefficients, djk represents the 
coefficient value at a scale j and position k and # is the 
cardinality operator (the number of elements which satisfy 
a given condition). The above formulation looks for a λj 
which minimizes equation 5. 

Observations made by the authors of SureShrink have led 

to the conclusion that the use of  

 

known as universal threshold, works better for sparse 
situations when compared with the SureShrink. Therefore 

it was proposed to use a hybrid scheme that evaluates 
the sparsity of the coefficients panel via  
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Hence the SureShrink threshold is selected according to 

the condition: 

       λj, SURE,             if 
 

λj =                                                                                
       λu,                        otherwise. 

These two methods, BayesShrink and SureShrink, were 
developed over the Wavelet Transform, which has no 
angular decomposition. However the application was 
extended here to CT, using the additional angular 
decomposition. When necessary, the estimation of the 
noise standard deviation was taken by 

 
,

0.6745

dmedian
σ

inest)( f


ˆ  

where d
(finest)

 is a vector of the curvelet coefficients at the 
finest scale and 0.6745 is the median of the absolute 
values of a normal distribution. 

In this work we developed a threshold estimate for the CT 
that is locally adaptive to the curvelet coefficients, and 
hence to the scales and directions, using a neighborhood 
RMS window. Our method was compared with 
VisuShrink, CST, SureShrink and BayesShrink when 
applied to a synthetic 2D data and finally we demonstrate 
the application of LMT on a real 2D seismic section. 

Method 

The development of a threshold technique that varies 
according to the location arrives on the characteristic of 
seismic images where the signal-to-noise ratio tends to 
decrease with time/depth due to attenuation of seismic 
waves. Thus in every coefficients panel of the curvelet 
domain a mobile window with the inverse RMS (since 
greater values of RMS tends to represent higher 
coefficients values that represents signals) is utilized as a 
weight array for the threshold estimate of each curvelet 
coefficient. The equation that represents the technique 
can be represented as  
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Here N represents the number of elements inside the 
window, a and b are half of the length and width of the 
window (rounded down) respectively, j and l are the scale 
and angle index of the curvelet coefficients C and k1 

and 
k2 defines the location coordinates. The parameter R is a 
positive real value, empirically chosen, that regulates the 
intensity of the threshold. As the amplitudes of seismic 
data can vary depending on a scale factor and since the 
threshold is determined by a RMS value, we propose to 
rescale the seismic image, before application of CT, to a 
standard deviation of 180 and use a constant A equals to 
10

3
. In this manner the sensitivity of the regulatory 

parameter R can result in a similar effect to different 
images. This threshold method was then named as Local 
Multilevel Threshold (LMT). 

In order to make the LMT more flexible and adjustable to 
different types of seismic images, the parameter R can 
accept up to three different values. These values act in a 
complementary way, being applied under different 
conditions established by the user:   

          Rf,       if     j ≥ Erf, 

R =    Ra,       if     j ≥ Era  and  θ1 ≤ l ≤ θ2, 

          Rg,       otherwise, 

where Erf and Era defines the scale panel from which will 
be applied the value Rf and Ra, respectively, and θ1 and 
θ2 defines the angular range in which the Ra value will be 
applied. These parameters are optional, and if not 
selected only the value Rg will be applied to all curvelet 
coefficients.  

Once defined the threshold by the equation 11, the 
application is realized using the Hard Threshold operator: 

 

                  D(Y, λ) =  

                

Thus the application of LMT is given by: 
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where C represents the curvelet coefficients, C
Tr

 the 
curvelet coefficient after the application of the operator D 
and λ the threshold at a given scale j, angle l, and position 
k1 and k2. 

Results 

The LMT method was compared with some of the 
classical methods cited previously. The efficacy of 
methods was evaluated through the PSNR (Peak Signal-
to-Noise Ratio), where highest values means better 
quality, defined as 
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In the above equation N represents the number of pixels 
of image, x is the noise-free image, y is the result of 
filtering and MAX represents the maximum value that a 
pixel can receive, which can be calculated as MAX = 2

B
 - 

1, where B is the number of bits per sample. The 
comparison between methods is presented on Figure 1. 
As can be seen the application of LMT resulted in the 
highest PSNR value when applied to the seismic noisy 
synthetic data, showing the best visual quality. 

As real seismic data is frequently corrupted with a great 
variety of noise, the use of different values for the R 
parameter (using equation 13) can improve the results 
when properly chosen. These factors apply the LMT 
method with a different regulatory parameter for a 
determined scale and forward (Rf) and to a determined 
range of angle (Ra). Hence with a more complex 
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threshold, with three different values of R, the filtering of a 
real seismic section can be more flexible and better 
adjustable for an optimal result.  

 

Figure 1: Results of a synthetic data filtering. a) Noise-
free synthetic. b) Synthetic contaminated with a Gaussian 
noise with σ = 30 (PSNR of 27.04 db). c) CST denoise 
result (PSNR = 41.52). d) SureShrink denoise result 
(PSNR = 42.59). e) BayesShrink denoise result (PSNR = 
43.89 db). f) LMT denoise result using R = 1 (PSNR = 
44.19 db). 

The application of LMT, utilizing three different values of 
R, was then tested in a real seismic section (Figure 2).  

 

Figure 2: Real seismic section. 

To better demonstrate the improvements of using three 
values for the parameter R, the filtering of Figure 2 was 
divided into three steps. In the first step the LMT was 
applied using R = 3. This value was taken as the highest 
before any signal loss after a few observations of different 
values. The result is shown on Figure 3. 

 

Figure 3: (a) Filtering result of Figure 2 utilizing R = 3. (b) 
Residue of the filtering. 

When tested values of R higher than 3 the residue began 
to show signal components, which indicates a bad result. 
As can be observed Figure 3(a) still presents some noise 
that couldn’t be removed utilizing only R = 3. This 
remaining noise features high frequency characteristics. 
Thus equation 13 was utilized with Rg = 3, Rf = 10 and Erf 
= 6. In this case Ra was not used. With this configuration 
the threshold could be applied to the highest scales (up to 
six) with stronger value without compromise the lowest 
scales. The result utilizing these parameters is presented 
on Figure 4. As can be seen the high frequency noise 
was almost completely removed without compromising 
the signal components. 
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Figure 4: (a) Filtering result of Figure 2 utilizing Rg = 3, Rf 
= 10 and Erf = 6. (b) Residue of the filtering. 

In the third step of the process were utilized three 
different values for R:  

          10,       if     j ≥ 6, 

R =    30,       if     j ≥ 6  and  110
o
 ≤ l ≤ 160

o
, 

          3,         otherwise. 

The above configuration adds the parameter Ra = 30, 
which is applied only up to the sixth scale and for the 
angular range 110

o
-160

o
. This is a useful way to remove 

noise that contaminated the section only in some specific 
directions, taking advantage of the orientation 
decomposition of CT.  

When equation 18 is utilized the LMT results in a visually 
better image than the original, with no signal loss 
compromising the data (Figure 5).  

 

 

Figure 5: (a) Filtering result of Figure 2 utilizing Rg = 3, Rf 
= 10, Ra = 30, Erf and Era = 6, θ1 = 110

o
 and θ2 = 160

o
. (b) 

Residue of the filtering. 

Thus the application of LMT with three different values for 
the regulatory parameter is a better way to adjust the 
filtering for a real seismic data. A better way to adjust the 
parameters of LMT is start with only one parameter, Rg = 
1 and then evaluate the filtering output and his residue. If 
the filtered result still noisy the Rg parameter must 
increase while no seismic signals can be observed in 
residue. If the result still noisy, and any increase in the 
parameter Rg leads to a signal loss, the optional 
parameters must be used to complement the filtering and 
improve results.  

Conclusions 

An optimal filtering of seismic data is an important step to 
be taken before an interpretation or a process that 
requires a clean image. The CT provides a high sparse 
domain with a scale and orientation decomposition, with 
atoms (curvelets) that fits very well to seismic waves. 

(18) 
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Based on that a complex threshold that explore the 
orientation decomposition and the characteristic of 
seismic images, where SNR vary with time (depth), was 
here developed and applied to synthetic and real data.  

The Local Multilevel Threshold method showed better 

results when compared with classical thresholds found on 
literature, like VisuShrink, SureShrink, CST and the 
BayesShrink. In addition to the highest PSNR, a better 
visual quality of LMT can be observed in the synthetic 
results. 

To improve the flexibility of LMT, the regulatory parameter 
R may receive up to three different values that explore the 
scale and angular decomposition of CT. The variety of 
combinations is extensive, allowing to be adjusted to 
different types of seismic data. 

The presentation of this threshold technique it’s not a final 
stage of development. The concepts and results 
presented here show that a more complex threshold 
estimation, that explores all the characteristics of CT, 
must be the better way to filter seismic images.   
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